Abstract

The effect of pre-existing precipitates on microstructure evolution, mechanical properties, and fracture behavior of Al-2 wt.%Cu alloy during accumulative roll-bonding (ARB) process was investigated. Aging treatment was done on Al-2 wt.%Cu alloy in order to produce the nano-particle size precipitates. The microstructure evolution was studied using transmission electron microscope and electron backscattering diffraction (EBSD), and mechanical properties were investigated using tensile test and Vickers microhardness measurements. The fine precipitates were formed after the aging process and improved the mechanical properties in the Aged-specimen compared to the solution-treated (ST) specimen. The EBSD analysis showed that the grain size after 6-cycle ARB process has decreased down to 650 and 420 nm for the ST-ARB and the Aged-ARB specimens, respectively. Also, with increasing the number of the ARB cycles, the fraction of HAGBs is increased in both the ST and Aged-specimens. It was found that as the number of cycles increased, the Vickers microhardness value and the yield strength and the tensile strength increased. The scanning electron microscope (SEM) images showed that as the number of the ARB cycles increased, the dimple size became smaller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call