Abstract

Extracellular matrix (ECM) stiffness is an important biophysical factor in human bone marrow mesenchymal stem cells (hBMSCs) differentiation. Although there is evidence that Yes-associated protein (YAP) plays an important role in ECM elasticity induced osteogenesis, but the regulatory mechanism and signaling pathways have not been distinctly uncovered. In this study, hBMSCs were cultured on collagen-coated polydimethylsiloxane hydrogels with stiffness corresponding to Young's moduli of 0.5 kPa and 32 kPa, and gene chip analyses revealed the phosphoinositide 3-kinase (PI3K)-AKT pathway was highly correlated with ECM stiffness. Following western blots indicated that AKT phosphorylation was evidently affected in 5th–7th days after ECM stiffness stimulation, while PI3K showed little difference. The AKT activator SC79 and inhibitor MK2206 were utilized to modulate AKT phosphorylation. SC79 and MK2206 caused alteration in the mRNA expression and protein level of alkaline phosphatase (ALP), collagen type I alpha 1 (COL1A1) and runt related transcription factor 2 (RUNX2). On 32 kPa substrates, YAP enrichment in nucleus were significantly promoted by SC79 and remarkably decreased by MK2206. Besides, the ratio of YAP/p-YAP is upregulated by SC79 on both 32 kPa and 0.5 kPa substrates. In conclusion, these findings suggest that AKT is involved in the modulation of ECM stiffness induced osteogenesis, and AKT phosphorylation also influences the subcellular localization and activation of YAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call