Abstract

ObjectivesThis study evaluated how the flexural strength and fracture behavior of a zirconia-based ceramic (Y-TZP) were affected by pre- and post-sintering mechanical and thermal treatments. MethodsTreatments included sandblasting with different particle size and type (30μm SiO2; 50 and 110μm Al2O3) and thermal conditioning. Two hundred bar-shaped specimens of pre-sintered Y-TZP ceramic (Lava Frame, 3M) were prepared (specimen dimensions: 25mm length×4mm width×0.7mm thickness) and divided into three groups (before sintering, after sintering and after sintering with heating treatment). The before sintering group specimens were airborne-particle abraded prior to dense sintering. Specimens from the after sintering group were airborne-particle abraded after sintering. The after sintering with heating treatment group specimens were submitted to a heating procedure after airborne-particle abrasion. The controls were the specimens that were sintered and not treated with any conditioning procedures. The specimens from all experimental conditions were analyzed by SEM, CLSM and XRD. All specimens were tested in four-point bending. Data were statistically analyzed using one-way ANOVA and Post Hoc tests (α=0.05). A Weibull analysis was used to analyze the strength reliability. ResultsSandblasting pre-sintered zirconia before sintering significantly decreased the flexural strength, except when the smallest blasting particles were used (30μm SiO2). Phase transformation (t–m) was observed after sandblasting and reverse transformation (m–t) was observed after heating. SignificanceSandblasting with 30μm SiO2 and 50μm Al2O3 allowed lower phase transformation. However, 30mm SiO2 presented better reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.