Abstract

BackgroundThe objective was to determine the effects of agility exercise on dogs of different skill levels with respect to urinary eicosanoids, urinary 15F2t-isoprostane (lipid peroxidation marker) and hematological/biochemical changes in plasma. Fifteen adult dogs had blood and urine samples obtained prior to, immediately and 4-hours following an agility exercise.ResultsHematocrit, red blood cells (RBC), albumin, and hemoglobin increased following exercise, with greatest increases correlating to increased skill group (novice, intermediate, masters); at 4-hours post-exercise, hematocrit, RBC, and hemoglobin were decreased. Phosphorus increased following exercise with the greatest increase in novice and intermediates. Plasma lactate increased 3.6-fold in masters, 3.2-fold in intermediates, and 1.2-fold in novice dogs. Urine thromboxane B2 (TXB2) more than tripled 4-hours post-exercise while 6-keto prostaglandin F1α (PGF1α, prostacyclin metabolite), prostaglandin E2 metabolites (13,14-dihydro-15-keto-prostaglandin A2 and 13,14-dihydro-15-keto-prostaglandin E2), and 13,14-dihydro-15-keto prostaglandin F2α were unaffected as determined by a competitive enzyme immunoassay and standardized by division with urine creatinine. Urine 15F2t-isoprostane increased insignificantly.ConclusionsAlterations in the plasma post-exercise were likely due to hemoconcentration from insensible water loss, splenic contraction and sympathetic stimulation while 4-hours later autohemodilution reduced RBC parameters. Elevations in plasma lactate and urinary TXB2 correlated with advanced skill level/speed of the dogs.

Highlights

  • The objective was to determine the effects of agility exercise on dogs of different skill levels with respect to urinary eicosanoids, urinary 15F2t-isoprostane and hematological/biochemical changes in plasma

  • The purpose of this study was to determine the effects of agility exercise on dogs of different skill levels with respect to 15F2t isoprostane, thromboxane B2 (TXB2), 6-keto prostaglandin F1α (PGF1α, prostacyclin metabolite), prostaglandin E2 metabolites (13,14-dihydro-15-keto-prostaglandin A2 and 13,14-dihydro-15-keto-prostaglandin E2), and 13,14-dihydro-15-keto prostaglandin F2α excretion in the urine and systemic hematological and biochemical changes in the plasma; and to determine if alterations in these parameters had resolved within 4 hours of the high intensity exercise

  • Each dog was examined by a veterinarian prior to participating in the agility exercise during which the heart and lungs were auscultated and their gait was examined for signs of lameness or dysfunction

Read more

Summary

Introduction

The objective was to determine the effects of agility exercise on dogs of different skill levels with respect to urinary eicosanoids, urinary 15F2t-isoprostane (lipid peroxidation marker) and hematological/biochemical changes in plasma. The percentage of dogs injured during agility exercise is estimated at 33% [2]. With such a high rate of injury, determining the effects of this type of exercise on the physiologic responses of dogs including. There is an overall minimal change in plasma volume in dogs during agility exercise but a tremendous necessity for anaerobic metabolism. The effect of skill and intensity level on specific physiologic variables in agility competition dogs is unknown

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call