Abstract

This work investigated the influence of the aggregate's aspect ratio on the fracture behavior of a low cement aluminum silicate refractory castable treated at two different temperatures (110 °C and 1000 °C). The aggregates were cylindrical pellets with an aspect ratio of 1, 2, 3 and 4, produced by extruding a mixture of clay and calcined alumina fired at 1600 °C for 4 h to yield mullite (3Al2O3.2SiO2). The behavior of the R-Curve and other relevant fracture parameters were evaluated based on the Two Parameter Fracture Model in a three-point flexure test of single-edge straight through notched specimens. The two temperature treatments produced different degrees of matrix-aggregate adhesion. The larger aspect ratio aggregates were found to promote toughening only in the dried condition, at 110 °C, while the specimens fired at 1000 °C for 4 h, regardless of their aggregate aspect ratio, displayed no significant toughening. The best results for fired samples, however, were obtained from specimens containing conventional angular aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call