Abstract

The chemolithoautotrophic bacterium, Acidithiobacillus ferrooxidans, commonly occurs in acid mine drainage (AMD) environments where it is responsible for catalyzing the oxidation of pyrite and concomitant development of acidic conditions. This investigation reports on the growth of this bacterial species on the pyrite surface and in the aqueous phase at a pH close to 2 as well as the role of adsorbed lipid in preventing pyrite dissolution. Both acid washed pyrite and acid-washed pyrite coated with lipids were used as substrates in the studies. The choice of lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3-Phosphocholine lipid (23:2 Diyne PC), a phosphocholine lipid, was based on earlier work that showed that this lipid inhibits the abiotic oxidation rate of pyrite. Atomic force microscopy showed that under the experimental conditions used in this study, the lipid formed ~4–20 nm layers on the mineral surface. Surface-bound lipid greatly suppresses the oxidation process catalyzed by A. ferrooxidans. This suppression continued for the duration of the experiments (25 days maximum). Analysis of the bacterial population on the pyrite surface and in solution over the course of the experiments suggested that the pyrite oxidation was dependent in large part on the fraction of bacteria bound to the pyrite surface.

Highlights

  • It is well-known that several species of prokaryotes are able to catalyze the oxidation of pyrite and play an important role in the development of Acid Mine Drainage (AMD), a severe environmental problem

  • With regard to microbial-induced pyrite oxidation it is the general consensus that these microorganisms exert their impact on pyrite dissolution to a large degree by increasing the amount of available Fe3+ reactant [i.e., convert Fe2+ to Fe3+], which increases the rate of pyrite oxidation [3,12,13]

  • The contribution of eqn (2) to pyrite oxidation under abiotic conditions is limited by the rate of ferrous iron oxidation, which is low in pH 2 solutions [21]

Read more

Summary

Introduction

It is well-known that several species of prokaryotes are able to catalyze the oxidation of pyrite and play an important role in the development of Acid Mine Drainage (AMD), a severe environmental problem. Due to the importance of microbes in the chemistry of such environments, a significant amount of research activity has been focused on understanding the role of microbes in the oxidation of sulfur-bearing minerals such as pyrite [2,3,4,5,6,7,8,9,10,11]. A goal of our research was to build on this prior research and to extend our understanding of microbial-accelerated pyrite oxidation to surfaces having adsorbed organic layers. With regard to this last point, the inhibition of pyrite oxidation using lipid having two hydrophobic tails (per polar head) has (page number not for citation purposes)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call