Abstract

The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5′-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.

Highlights

  • The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-­ nucleobase modifications and mass spectrometry E

  • E7?@9/, !KG" L4/.,-)" :>" c" ,.5" y" >1,/@0.1,@0" ':--4)4:." 0.01/;G" :>" C3HDIGDH" 4:.)" :>" 2JA"L"CCAA",

Read more

Summary

Introduction

The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-­ nucleobase modifications and mass spectrometry E.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.