Abstract

We assessed the effect of four different virulence (vir) gene combinations on plant transformation efficiency and transgene behaviour in rice using the pGreen/pSoup dual binary vector system. Transformation experiments were conducted using a pGreen vector containing the bar and gusA expression units with, or without, the virG542, virGN54D, virGwt or the virG/B/C genes added to the backbone. Additonal vir gene(s) significantly altered plant transformation efficiency and the integration of vector backbone sequences. However, no differences in transgene copy number, percentage of expressing lines and expression levels could be detected. Addition of virGwt was the most beneficial, doubling the overall performance of the pGreen/pSoup vector system based on transformation frequency, absence of backbone sequence integration and expression of unselected transgenes. In 39% of the plant lines, the additional vir genes were integrated into the rice genome. The contribution of 'super dual binary' pGreen/pSoup vectors to the development of efficient rice transformation systems and to the production of plants free of selectable marker genes are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call