Abstract
In this study, the hydrolytic degradation of Poly(lactic acid) (PLA) and acetylated PLA (PLA-Ac)–clay nanocomposites were investigated. The organo clay was obtained by ion exchange reaction using cetyl tri methyl ammonium bromide (CTAB). Nanocomposites containing 2, 5 and 8% mass ratio of organo clay (CTAB-O) were prepared. PLA and its organo clay nanocomposites were characterized by scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray diffraction (XRD) to determine the morphology before and after hydrolytic degradation. Fourier transform infrared (FTIR) analyses of PLA and PLA-Ac were also obtained. The hydrolytic degradation of polymers and their composites were investigated in the phosphate buffered saline solution (PBS). The results showed that controlled hydrolytic degradation was observed in the samples with end group modification of PLA. While weight loss of PLA films was 28%, that of PLA-Ac films was 18% after 60 days degradation time. The weight loss was obtained as 29.5 and 25.5% for PLA-5 wt% organo clay (PLA/5CTAB-O) and PLA-Ac-5 wt% organo clay (PLA-Ac/5CTAB-O) nanocomposites films, respectively. It was also observed that thermal degradation of PLA-Ac was much more than that of PLA. Hydrolytic degradation increased depending on organo clay content. The end group modificated PLA results in controlled hydrolytic degradation. While hydrolytic degradation in polymer films occurred as surface erosion, bulk erosion was observed in composite films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.