Abstract

IntroductionThis study aimed to compare the biomechanical properties of a mandibular first molar with different endodontic cavity designs and increasing sizes of root canal preparations using finite element analysis (FEA). MethodsThe experimental finite element models were designed with 3 different endodontic access cavities and 2 sizes of canal preparations: traditional access cavity, conservative access cavity, and truss access cavity and #30/.04 and #40/.04 of root canal preparations. Vertical and oblique loads were applied with a 250-N static force to simulate masticatory forces. Mathematical analysis was performed to evaluate the stress distribution patterns. Maximum von Mises (VM) stresses were assessed at the occlusal surface; cervical line; and 1 , 3, 5, and 7 mm from the root apices. ResultsDecreasing the size of the access cavity was associated with a higher magnitude of cervical stresses. The magnitude of VM stresses was maximum at the 7-mm level and was minimum at the 1-mm level from the root apex. Increasing the size of the access cavity was associated with the transmission of stresses to a further apical direction regardless of the extent of root canal enlargement. The root canal enlargement from #30 to #40 increased radicular VM stresses within all models. ConclusionsWithin the limitations of this study, conservative and truss access designs preserved a significant volume of tooth structure. The extent of root canal enlargement should be as small as practical without jeopardizing the biologic objectives of root canal treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.