Abstract

(Ag,Cu)(In,Ga)Se2solar cells with bandgaps of ≈1.45 eV with a large spread in absorber stoichiometry are characterized with the intention of assessing the effect of composition on the stability of the devices. This material is observed to have a poor diffusion length, leading to very strong dependence upon the depletion region width for charge carrier collection. The depletion width is observed to depend strongly upon the stoichiometry value and shrinks significantly after an initial period of dark storage. It is also seen that the depletion width can be varied strongly through light‐soaking and dry‐heat treatments, with prolonged annealing leading to detrimental contraction and light soaking leading to expansion which increases current collection. The extent of depletion width variation in response to the treatments is also clearly linked to absorber stoichiometry. Consequently, the device performance, particularly the current output, exhibits a stoichiometry dependence and is considerably affected after each round of treatment. Possible causes of this behavior are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.