Abstract

This paper explores the use of biofeedback to improve gait in Parkinson's disease (PD) and, in particular, reports on the design and testing of a new vibratory orthosis. The orthosis causes a rhythmic vibratory stimulus to be applied to one or other side of the lumbar region. The stimulus is synchronized with stepping through the use of heel-located switches; each switch controls the stimulus to the corresponding side of the body. In the experimental evaluation it was hypothesized that step-synchronized, vibratory stimulation applied to the lumbar region will lead to an increase in walking velocity in patients with idiopathic Parkinson's disease. Subjects were asked to carry out walking trials under two conditions. In one condition, the vibratory orthosis was active; in the other condition the vibratory orthosis was inactive. Walking velocity was measured over a straight, 10 m walkway. A comparison between the two conditions using a paired t-test showed a significant increase in walking velocity when the vibratory orthosis was active, compared with the inactive condition. It was speculated that use of the vibratory orthosis, which stimulates proprioceptive receptors, may lead to an improvement in gait, stability and may support gait re-education in PD patients. It was also suggested that the results may inform future ideas for rehabilitation of similar neurological diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.