Abstract

Neuromelanin is an amorphous pigment of the catecholamine origin that accumulates in certain dopaminergic neurons of the substantia nigra of human brain. In Parkinson's disease, there appears to be selective degeneration of the most heavily pigmented neurons of the substantia nigra, and this process has been linked to the presence of neuromelanin. It has been postulated that neuromelanin could increase the risk of oxidative stress reactions. On the other hand, melanin is usually considered to be an efficient antioxidant. Here we analyze experimental conditions that stimulate, or inhibit, antioxidant properties of neuromelanin. Using electron spin resonance (ESR) - spin trapping technique and salicylate hydroxylation assay, we monitored the formation of free hydroxyl radicals generated by a Fenton system in the presence of varying concentration of dopamine-melanin, a synthetic model for neuromelanin. Our data clearly indicate that the antioxidant action of neuromelanin is predominantly due to its ability to sequester redox-active metal ions such as iron. Using direct ESR spectroscopy, we have shown that ferric complexes with neuromelanin are resistant to reduction by mild biological reductants such as ascorbate. We have demonstrated that dopamine-melanin saturated with ferric ions, could enhance the formation of free hydroxyl radicals by redox activation of the ions. Thus, under the conditions that stimulate the release of accumulated metal ions, neuromelanin may actually become an efficient prooxidant. It is conceivable that neuromelanin, which normally is able to protect pigmented dopaminergic neurons against metal-ion related toxicity, could under extreme conditions have a cytotoxic role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call