Abstract

Evidence points to a link between environmental stressors, coral-associated bacteria, and coral disease; however, few studies have examined the details of this relationship under tightly controlled experimental conditions. To address this gap, an array of closed-system, precision-controlled experimental aquaria were used to investigate the effects of an abrupt 1°C above summer ambient temperature increase on the bacterial community structure and photophysiology ofPorites compressacorals. While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes. Two of three coral colonies harbored more closely related bacterial communities at the time of collection and, despite statistically significant shifts in bacterial community structure for both control and treatment corals during the 10-day acclimation period, maintained this relationship over the course of the experiment. The experimental design used in this study proved to be a robust, reproducible system for investigating coral microbiology in an aquarium setting.

Highlights

  • The worldwide degradation of coral reef ecosystems is due, in part, to the emergence of novel pathogenic diseases affecting scleractinian corals [1, 2], and it has been speculated that the widespread proliferation of coral diseases is linked to increasing sea surface temperatures (SSTs) [3, 4]

  • While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes

  • It remains undisputed that bacteria play important roles in both maintaining and destabilizing the health of the coral holobiont, which is composed of coral host polyps, symbiotic dinoflagellates known as zooxanthellae, and a diverse assemblage of associated algae, fungi, Bacteria, Archaea, and viruses associated with the skeleton, tissues, and mucus layer of adult coral colonies [14, 15]

Read more

Summary

Introduction

The worldwide degradation of coral reef ecosystems is due, in part, to the emergence of novel pathogenic diseases affecting scleractinian corals [1, 2], and it has been speculated that the widespread proliferation of coral diseases is linked to increasing sea surface temperatures (SSTs) [3, 4]. Many disease outbreaks correlate with temperature anomalies and seasonal warming [3, 5, 6], and increased SSTs have been shown to affect the virulence of coral disease pathogens [7]. Increased temperatures, dissolved organic carbon loading, elevated nutrient concentrations, reduced pH, and point source coastal pollution have all been shown to drive shifts in the composition of bacterial community in corals [21,22,23]. Shifts in coral-associated bacteria have been shown to occur in corals infected with a known coral pathogen [24], and changes in bacterial biota are often detectable prior to disease symptoms becoming visible. Coral associated bacterial communities are responsive to infection by disease agents and environmental stressors. The structure of the coral-associated bacterial community could potentially serve as a biological indicator of coral health

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call