Abstract
Pinniped predation on commercially and ecologically important prey has been a source of conflict for centuries. In the Salish Sea, harbor seals (Phoca vitulina) are suspected of impeding the recovery of culturally and ecologically critical Pacific salmon (Oncorhynchus spp.). In Fall 2020, a novel deterrent called Targeted Acoustic Startle Technology (TAST) was deployed at Whatcom Creek to deter harbor seals from preying on fall runs of hatchery chum (O. keta) and Chinook (O. tshawytscha) salmon in Bellingham, Washington, USA. Field observations were conducted in 2020 to compare the presence and foraging success of individual harbor seals across sound exposure (TAST-on) and control (TAST-off) conditions. Observations conducted the previous (2019) and following (2021) years were used to compare the effects observed in 2020 to two control years. Using photo-identification, individual seals were associated with foraging successes across all 3 years of the study. Generalized linear mixed models showed a significant 45.6% reduction in the duration (min) individuals remained at the creek with TAST on, and a significant 43.8% reduction in the overall foraging success of individuals. However, the observed effect of TAST varied across individual seals. Seals that were observed regularly within one season were more likely to return the year after, regardless of TAST treatment. Generalized linear models showed interannual variation in the number of seals present and salmon consumed. However, the effect of TAST in 2020 was greater than the observed variation across years. Our analyses suggest TAST can be an effective tool for managing pinniped predation, although alternate strategies such as deploying TAST longer-term and using multi-unit setups to increase coverage could help strengthen its effects. Future studies should further examine the individual variability found in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.