Abstract

It is accustomed to think that turbulence models based on solving the Reynolds-Averaged Navier-Stokes equations require empirical functions to accurately reproduce the behavior of flow characteristics of interest, particularly near a wall. The current paper analyzes how choosing a model for pressure-strain correlations in second-order closures affects the need for introducing empirical functions in model equations to reproduce the flow behavior near a wall correctly. An axially-rotating pipe flow is used as a test flow for the analysis. Results of simulations demonstrate that by using more physics-based models to represent pressure-strain correlations, one can eliminate wall functions associated with such models. The higher the Reynolds number or the strength of imposed rotation on a flow, the less need there is for empirical functions regardless of the choice of a pressure-strain correlation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.