Abstract

Laminar hydrogen flame propagation in a channel with a perforated plate is investigated using 2D reactive Navies-Stokes simulations. The effect of the perforated plate on flame propagation is treated with a porous media model. A one step chemistry model is used for the combustion of the stoichiometric H2–air mixture. Numerical simulations show that the perforated plate has considerable effect on the flame propagation in the region downstream from the perforated plate and marginal effect on the upstream region. It is found to squeeze the flame front and result in a ring of unburned gas pocket around the flame neck. The resulting abrupt change in flow directions leads to the formation of some vortices. Downstream of the perforated plate, a wrinkled “M”-shape flame is observed with “W” shape flame speed evolution, which lastly turns back to a convex curved flame front. Parametric studies have also been carried out on the inertial resistance factor, porosity, perforated plate length and its location to investigate their effects on flame evolution. Overall, for parameter range studied, the perforated plate has an effect of reducing the flame speed downstream of it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.