Abstract

ABSTRACTThe number of baffles has an impact on the thermal-hydraulic performance of a shell-and-tube heat exchanger (STHX), thus a model was developed using Engineering Equations Solver software to solve the governing equations. The program uses Kern, Bell-Delaware, and flow-stream analysis (Wills Johnston) methods to predict both the heat-transfer coefficient and pressure drop on the shell side of an STHX. It was found that Bell-Delaware method is the most accurate method when compared with the experimental results. The effect of a number of baffles, mass flow rate, tube layout, fluid properties and baffle cut were investigated. The analysis revealed that an increase in the number of baffles increases both the heat-transfer coefficient and pressure drop on the shell-side. Increasing the mass flow rate, the heat transfer coefficient increases; however, the pressure drop increases at a higher rate. For a large number of baffles, the pressure drop decreases with an increase in the baffle cut. It also shows that the heat transfer coefficient increases at a higher rate with the square tube layout, whereas the rotated square and triangular layouts have approximately the same behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call