Abstract

Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (−6.4×10 10 V m −1 ), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a −2.5×10 10 V m −1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (−1.0×10 10 V m −1 ), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call