Abstract

Considerable effort has been directed towards regenerating defective tissues using tissue-engineering methods. Recently, peptides have been recognized as a valuable scientific tool in the field of tissue-engineering. The PPFLMLLKGSTR motif of the human laminin-5 α3 chain has been previously reported to promote keratinocyte survival; however, the in vivo effects of the PPFLMLLKGSTR motif have not yet been studied. These studies raised the hypothesis that a laminin-5-derived peptide can promote wound healing by accelerating re-epithelialization in vivo. To examine this hypothesis, we applied chitin microfibrous matrices coated with the PPFLMLLKGSTR motif in both rat and rabbit full-thickness cutaneous wound models. Compared with vehicle-treated and peptide-treated cutaneous wounds, the application significantly promoted early-stage wound healing by accelerating re-epithelialization, notably reduced inflammatory cell infiltration, and prominently enhanced fibroblast proliferation. These findings support our hypothesis that the PPFLMLLKGSTR motif acts as a very effective wound healing accelerator by enhancing re-epithelialization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call