Abstract

Background: Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation.Objective: The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke.Methods: Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system.Results: Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group.Conclusions: A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call