Abstract

This paper explores the effect of a gravitational induction force, similar to gravito-electromagnetism but of several orders of magnitude larger, on a spiral galaxy. This would provide, because of the huge amount of mass currents associated with spirals, a rather large gravitational induction force. Standard gravitational dynamics is modified by adding an anti-symmetric force tensor analogous to electromagnetism. By choosing a special free space solution to the Einstein field equations, it was found that the resulting force field would drop off by an r −1 rather than an r −2 rule. Thus this new induction force would grow to dominance over the large distances associated with galaxies. Any r −1 force will produce the flat rotation curves that are observed in disk galaxies as well as explain the Tully-Fisher relationship. It would also explain why the inner core of the spirals remain Newtonian. Quite surprisingly, this simple hypothesis also seems to offer explanations for many other observed phenomena as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call