Abstract
AbstractThe present study was aimed at demonstrating the possibility of producing a graded charge carrier concentration in a PbTe crystal by taking advantage of the concentration profile that is set up by the diffusion of In from an external source. Doping by indium generates deep impurity levels lying close to the edge of the conduction band. The Fermi level pinning effect and the electron population of the In impurity levels, which reduces the minority carrier concentration at elevated temperature, significantly improve the thermoelectric behavior of the resulting material. The penetration profiles of In, originating from an external gaseous or liquid source, were determined using Seebeck coefficient measurements in p- and n-type PbTe crystals. In the p-type crystal, the Seebeck coefficient changed sign as the In concentration induced a change from p-type to n-type character. The thermovoltage of a PbTe crystal in which an In concentration profile, generated by In diffiusing from a gaseous source had been established, was determined in the 50 to 430 °C temperature range. The constant Seebeck coefficient that was observed over the whole temperature range provides the experimental support for the underlying premises of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.