Abstract
The irreversible changes of the intensity of trapped protons with energy above 1 MeV in the Earth's magnetosphere near the outer boundary of trapping are observed after moderate geomagnetic storms on the low-altitude polar-orbiting satellite Intercosmos-17. These changes are interpreted in terms of nonadiabatical effects of proton motion in the disturbed geomagnetic field (assuming D st variation) which affects the conditions for stable trapping of protons during the storm. The decrease of proton intensity is due to an adiabatic decrease of energy, an increase of mirror-point altitude and nonadiabatic scattering and losses. The interaction of two types of particle motion—gyrorotation and the ‘bounce’ motion, which leads to the instability of motion, is assumed. The importance of nonadiabatical losses of trapped protons with low equatorial pitch angles for changes near the proton boundary is pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.