Abstract

Flexibility is widely accepted as an important component of fitness, yet flexibility training can be detrimental to muscle performance particularly where a high number of stretch cycles are performed. The purpose of this study was to investigate whether chronic proprioceptive neuromuscular facilitation (PNF) stretch training could successfully improve the knee flexion range of motion without having a detrimental effect on the peak isokinetic torque of the quadriceps. The minimum knee angle in flexion and the peak isokinetic quadriceps torque were measured at 120 and 270 degrees xs. Subjects then participated in a 4-week quadriceps flexibility training program consisting of 3 cycles of PNF stretching performed 3 times a week. The range of motion was recorded before and after the first stretching session of each week. At the end of the 4-week period, the peak isokinetic quadriceps torque and flexibility were again measured. The mean (SE) improvement in the knee flexion range of motion over the whole program was 9.2 degrees (1.45 degrees ), and typical gains after a single stretching session were around 3 degrees . Post hoc analysis showed that the pretraining session range of motion was significantly improved in week 4 compared with the pretraining session range of motion in weeks 1 and 2 (p < 0.05). There was no change (p = 0.9635) in the peak isokinetic torque produced at 120 degrees xs (week 1: 121.9 (4.6) N x m; week 2: 121.9 (5.2) N x m) or at 270 degrees xs (week 1: 88.1 (3.4) N x m; week 2: 88.6 (4.9) N x m). These findings suggest that it is possible to improve flexibility using 3 PNF stretch cycles performed 3 times a week without altering muscle isokinetic strength characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.