Abstract

Running on a non-motorized, curved-deck treadmill is thought to improve gait mechanics. It is not known, though, whether the change in gait carries over to running on a motorized treadmill on level ground. To determine the effect of running on a curved non-motorized treadmill (CNT) on gait characteristics, measured during a subsequent bout of running on a traditional motorized treadmill (TMT), sixteen healthy college-aged participants, aged (mean ± SD) 20.4 ± 1.6 years, volunteered to have their gait analyzed while running on a TMT and CNT. After familiarization with, and a warm-up on, both treadmills, each subject completed five 4-min bouts of running, alternating between traditional motorized and curved non-motorized treadmills: TMT-1, CNT-1, TMT-2, CNT-2, and TMT-3. Variables of interest included step length (m), stride length (m), imbalance score (%), and stride angle (°), and were measured using Optogait gait analysis equipment. We found differences in gait characteristics among TMT-1, TMT-2, and TMT-3, which can be attributed to running on the CNT. The results show that running on a CNT resulted in significant changes in gait characteristics (step length, stride length, imbalance score and stride angle). These findings suggest that running on a CNT can significantly influence running gait.

Highlights

  • Running has remained a popular exercise for decades all over the world

  • Humans are one of the few species who have mastered bipedal locomotion, and their foot has evolved to be the basis for such a specialized gait [3]

  • As mentioned by Altman and Davis [6], analysis of rear foot striking (RFS) in a barefoot condition landing with RFS results in a very defined impact peak in the vertical ground reaction force during contact, which precedes the propulsion peak

Read more

Summary

Introduction

Running has remained a popular exercise for decades all over the world. In the United States of America alone, it is estimated that over 16 million people finish running races annually [1].According to some experts, long-distance running was crucial in creating our current upright body form [2]. The bones are arranged to form a medial longitudinal arch, which makes it ideal for its function of supporting the weight of the body and spreading the forces experienced during gait [3,5]. As mentioned by Altman and Davis [6], analysis of rear foot striking (RFS) in a barefoot condition landing with RFS results in a very defined impact peak in the vertical ground reaction force during contact, which precedes the propulsion peak. This results in high loading rates in early stance. Midfoot striking results in more variable loading, but load rates typically fall between the rear foot and forefoot strike pattern

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call