Abstract

This study sought to utilize indigenous soil micro-organisms to suppress wilt-causing fungal pathogens of the banana. Fungal pathogens were isolated from wilt-affected rhizospheric soil, and potential antagonistic bacterial strains were isolated from healthy rhizospheric soil in the same area from which fungal pathogens were isolated. The antifungal activity of isolated micro-organisms against fungal pathogens was studied both in vitro and in vivo against fungal pathogens. It was found that Fusarium oxysporum and Alternaria sp. were pathogenic, while Penicillium sp., Bacillus velezensis and Bacillus subtilis were antagonistic. Moreover, it was seen that B. velezensis, B. subtilis and Penicillium sp. inhibited the growth of the two fungal pathogens in both in vitro and in vivo experiments. Further investigation indicated that B. velezensis, B. subtilis and Penicillium sp. were able to produce enzymatic antifungal compounds (chitinase and β-1,3-glucanase). The spray application around rhizome revealed that a combination of Bacillus spp. and Penicillium sp. in greenhouse conditions gave the highest reduction in disease severity by up to 60% to both fungal pathogens among the treatments. Banana disease is seen to be induced not only by F. oxysporum but also by Alternaria sp. The isolated indigenous micro-organisms can effectively control both the pathogens. The combination of isolated antagonistic micro-organisms has thus demonstrated substantial potential for suppressing banana disease. An antagonistic consortium isolated in this study has demonstrated remarkable potential for controlling fungal diseases caused by Fusarium sp. and Alternaria sp. Therefore, the use of indigenous microflora to improve disease suppression of banana plants against soil-borne pathogens is a preferable approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call