Abstract

Density-functional theory (DFT) and ab initio calculations have been used to investigate the effect of a complexed lithium cation on the radical-clock rearrangement of the 2-norcaranyl radical to the 3-cyclohexenylmethyl radical. As found earlier for ring-closing radical clocks, complexation with a metal ion leads to a significant lowering of the barrier to rearrangement. DFT calculations on a model for the norcaranyl clock in cytochrome P450 confirm the two-state reactivity proposal of Shaik et al. and indicate that the porphyrin exerts little or no electrostatic effect on the rearrangement barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call