Abstract

BackgroundIn the past decade, the use of probiotic-containing products has been explored as a potential alternative in oral health therapy. A widely available probiotic drink, Yakult, was evaluated for oral health applications in this longitudinal study. Selected oral health parameters, such as levels and composition of salivary and tongue plaque microbiota and of malodorous gases, in dentate healthy individuals were investigated for changes. The persistence of the probiotic strain in the oral cavity was monitored throughout the study period.MethodsA three-phase study (7 weeks) was designed to investigate simultaneously the effect of 4-week consumption of the probiotic-containing milk drink Yakult on the microbiota of saliva and dorsum tongue coating in healthy dentate people (n = 22) and levels of volatile sulphur compounds (VSCs) in morning breath. Study phases comprised one baseline visit, at which ‘control’ levels of oral parameters were obtained prior to the probiotic product consumption; a 4-week period of daily consumption of one 65 ml bottle of Yakult, each bottle containing a minimum of 6.5×109 viable cells of Lactobacillus casei strain Shirota (LcS); and a 2-week washout period. The microbial viability and composition of saliva and tongue dorsum coating were assessed using a range of solid media. The presence of LcS in the oral cavity was investigated using a novel selective medium, ‘LcS Select’. Portable sulphur monitors Halimeter® and OralChromaTM were used to measure levels of VSCs in morning breath.ResultsUtilization of the LcS Select medium revealed a significant (p < 0.05) but temporary and consumption-dependent presence of LcS in saliva and tongue plaque samples from healthy dentate individuals (n = 19) during the probiotic intervention phase. LcS was undetectable with culture after 2 weeks of ceasing its consumption. Morning breath scores measured with Halimeter and OralChroma were not significantly affected throughout the trial, except in a small number of individual cases where Halimeter scores were significantly reduced during the probiotic intervention period. Natural fluctuations in resident acidogenic populations, and numbers of Candida and anaerobic species, including malodourous Gram-negative anaerobes, were unaffected.ConclusionWhile no broad ecological changes in the mouth were induced by consumption of Yakult in healthy dentate individuals, findings of this study confirm the temporary and intake-dependent presence of LcS. Future studies could focus on subjects at greater risk of oral infection, where ill-defined microbiota (e.g. an increased presence of periopathogens) or clinically diagnosed halitosis might be significantly affected by consumption of this probiotic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call