Abstract

Implant-based breast reconstruction is associated with increased risk of early infection and late-stage capsular contracture. We evaluated the feasibility of a dual drug-releasing patch that enabled the controlled delivery of antibiotics and immunosuppressants in a temporally and spatially appropriate manner to the implant site. The efficacy of a dual drug-releasing patch, which was 3-dimensional-printed (3D-printed) with tissue-derived biomaterial ink, was evaluated in rats with silicone implants. The groups included implant only (n = 10); implant plus bacterial inoculation (n = 14); implant, bacterial inoculation, and patch loaded with gentamycin placed on the ventral side of the implant (n = 10), and implant, bacterial inoculation, and patch loaded with gentamycin and triamcinolone acetonide (n = 9). Histologic and immunohistochemical analyses were performed 8 weeks after implantation. The 2 drugs were sequentially released from the dual drug-releasing patch and exhibited different release profiles. Compared to the animals with bacterial inoculation, those with the antibiotic-only and the dual drug-releasing patch exhibited thinner capsules and lower myofibroblast activity and inflammation, indicating better tissue integration and less foreign body response. These effects were more pronounced with the dual drug-releasing patch than with the antibiotic-only patch. The 3D-printed dual drug-releasing patch effectively reduced inflammation and capsule formation in a rat model of silicone breast reconstruction. The beneficial effect of the dual drug-releasing patch was better than that of the antibiotic-only patch, indicating its therapeutic potential as a novel approach to preventing capsular contracture while reducing concerns of systemic side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call