Abstract

Nowadays, mobile devices that emit non-ionizing electromagnetic radiation (EMR) are predominantly used by juveniles and pubescents. The aim of the present study was to evaluate the effect of whole body pulsed EMR on the juvenile Wistar albino rat testis at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm². The investigated animals (n=24) were divided into two control and two EMR groups (5 and 6 week old rats; 6 rats per group). Both EMR groups were irradiated continually for 3 weeks (2h/day) from postnatal days 14 and 21, respectively. EMR caused an irregular shape of seminiferous tubules with desquamated immature germ cells in the lumen, a large number of empty spaces along the seminiferous epithelium and dilated and congested blood vessels in the interstitial tissue of the testis. The cytoplasm of Sertoli cells showed strong vacuolization and damaged organelles, with the cytoplasm full of different heterophagic and lipid vacuoles or the cytoplasm of spermatocytes with swollen mitochondria in both irradiated groups. A significant increase in the total tubular area of seminiferous tubules was observed in both EMR groups compared with controls (P<0.001). A significant increase in the TUNEL-positive apoptotic nuclei (P<0.01) was accompanied by a significant rise in both Cu-Zn-SOD (P<0.01) and Mn-SOD (P<0.001) positive cells in the 6 week old experimental rats compared to control animals. Our results confirmed a harmful effect of non-ionizing radiation on the structure and ultrastructure of the juvenile rat testis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.