Abstract
The reduction of cyclopentadienylmetal halide complexes is generally considered to involve addition of an electron to an orbital that is antibonding with respect to the metal–halide bond. Subsequent metal–halide bond cleavage yields the halide and an organometallic radical. At inert electrodes, this radical is reduced further to an 18-electron anion. This series of reactions constitutes a prototypical ECE mechanism. Chemical reduction can be used to divert the radical into other pathways such as electron transfer chain catalyzed substitution. Attempts to initiate such reductively induced substitution reactions of CpFe(CO) 2I and Cp′Mo(CO) 3I give very different results, suggesting that these very similar complexes are reduced via substantially different mechanisms. Very likely, the molybdenum complex reacts via a DISP mechanism instead of ECE. The difference in electrochemical reduction mechanism as well as the different reactivity toward reductively induced substitution are explained in terms of a difference in the formation constants of 19-electron intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.