Abstract

IntroductionPlacental P-glycoprotein (P-gp) plays a significant role in controlling transplacental digoxin transfer rate. Investigations on P-gp regulation in placenta of women with different pregnant pathological states are of great significance to individualized transplacental digoxin treatment for fetal heart failure (FHF). This study aimed to explore the effect of 17α-ethynylestradiol induced intrahepatic cholestasis of pregnancy (ICP) on placental P-gp in mice. MethodsICP model in mice was induced by subcutaneous injection of 17α-ethynylestradiol dissolved in propylene glycol once daily from E12.5 to E16.5. Maternal plasma ALT, AST, TB, DBIL, γ-GT, LDH, ALP and TBA concentrations were measured. HE staining was applied for observation of maternal liver cells degeneration, necrosis and intrahepatic cholestasis. Placental Abcb1a/Abcb1b/HIF-1α mRNA and P-gp/HIF-1α protein expression were determined by real-time quantitative PCR and western-blot. Maternal plasma and fetal-unit digoxin concentrations were detected by a commercial kit assay. ResultsThe ICP group showed higher levels of maternal plasma ALT, AST, TB, DBIL, γ-GT, LDH, ALP and TBA concentrations, reduction in fetal survival rates, lower placental and fetal weights, and typical liver cells degeneration, necrosis and intrahepatic cholestasis. The placental Abcb1a mRNA and P-gp expression of ICP group were significantly elevated, while transplacental digoxin transfer rates were significantly decreased. Both placental HIF-1α mRNA and protein expression was significantly elevated in the ICP group, and there was a positive correlation between Abcb1a mRNA and HIF-1α mRNA. Conclusions17α-ethynylestradiol induced ICP could up-regulate placental P-gp expression and reduce transplacental digoxin transfer rate in mice, which might be partly associated with higher expression of HIF-1α.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.