Abstract

Introduction:Bagassa guianensis Aubl, a tree widely distributed in Brazil, significantly contributes to the furniture industry. Notably, it harbors the bioactive compound 1-deoxynojirimycin (1-DNJ), which is retrievable from timber residues and retains activity even days after wood extraction. This makes Bagassa guianensis a promising biological resource for anticancer therapy and pharmacology studies. This study delves into the in vitro antineoplastic actions of 1-DNJ, focusing on adenocarcinoma gastric cell lines (ACP02) and glioblastoma (A172).Methods: The effect of 1-DNJ on cell viability was evaluated after 72 hours of treatment in the ACP02 and A172 cell lines. We also assessed the effect of 1-DNJ on the pattern of cell migration, cell death, changes in the cell cycle by flow cytometry, the production of reactive oxygen, and its antioxidant capacity in the scavenging of free radicals.Results: Assessing cell viability after 72 h (about 3 days) of treatment reveals a remarkable reduction, particularly in glioblastoma cells (A172), exhibiting a lower IC50 compared to ACP02 and MRC5 (fibroblast derived from normal lung tissue) cell lines. This decreased viability correlates with reduced reactive oxygen species (ROS) production in both cell lines after the treatment with 1-DNJ. Furthermore, 1-DNJ induces cell cycle arrest, impedes cell migration, and prompts cell death in ACP02 and A172.Discussion: These findings support 1-DNJ as a potent antineoplastic agent, particularly efficacious against glioblastoma and gastric adenocarcinoma. Thus, unveiling the therapeutic potential of Bagassa guianensis Aubl for cancer treatment and expanding the horizons of bioeconomy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call