Abstract

Introducing solubilizing α‐branched alkyl chains on a poly(diketopyrrolopyrrole‐alt‐terthiophene) results in a dramatic change of the structural, optical, and electronic properties compared to the isomeric polymer carrying β‐branched alkyl side chains. When branched at the α‐position the alkyl substituent creates a steric hindrance that reduces the tendency of the polymer to π–π stack and endows the material with a much higher solubility in common organic solvents. The wider π–π stacking and reduced tendency to crystallize, evidenced from grazing‐incidence wide‐angle X‐ray scattering, result in a wider optical band gap in the solid state. In solar cells with a fullerene acceptor, the α‐branched isomer affords a higher open‐circuit voltage, but an overall lower power conversion efficiency as a result of a too well‐mixed nanomorphology. Due its reduced π–π stacking, the α‐branched isomer fluoresces and affords near‐infrared light‐emitting diodes emitting at 820 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call