Abstract

Currently, hard alloys are common tool materials; they are widely used in the tool manufacturing industry. Due to the presence of refractory carbides in its structure, hard-alloy tools feature a high hardness of 80 to 92 HRA (73 to 76 HRC); a high heat resistance (from 800 °С to 1,000 °С); therefore, they can be used at speeds that are several times higher than cutting speeds of high-speed steel grades. Hard alloys are used in the form of plates that are either mechanically fixed on or soldered to tool holders. The main operational parameters, that determine the hard-alloy tool operation mode, are hardness, wear resistance, and bending strength. The operational parameters of alloy are highly dependent on its structure, phase composition, lattice block sizes, and micro-stress values [1-20]. The main methods to enhance physical and mechanical properties of hard-alloy plates are improvement of manufacturing technology, including production of fine-grained alloys and microalloying, as well as applying composite coating by vacuum deposition, which allows to increase the tool resistance 1.5 to 2 times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call