Abstract

To investigate the cytotoxic effect and its mechanism of the micromolecule compound on the leukemia cells. The cytotoxic effects of 28 Nilotinib derivatives on K562, KA, KG, HA and 32D cell lines were detected by MTT assays, and the compound Nilo 22 was screen out. Cell apoptosis and cell cycle on leukemia cells were detected by flow cytometry. The effect of compound screened out on leukemogenesis potential of MLL-AF9 leukemia mice GFP+ cells was tested by colony-forming units assays (CFU). The cytotoxic effect was further detected by transplant assays ex vivo. Telomerase activity assay, C-circle assay were used to measure the effects of compound on the length mechanism of telomere, RT-PCR was used to detected the changes of telomere. Nilo 22 serves as the most outstanding candidate out of 28 Nilotinib derivatives, which impairs leukemia cell lines, but spares normal hematopoietic cell line. Comparing with Nilotinib, Nilo 22 could induce the apoptosis of GFP+ cells significantly, slightly arrests the cell cycle at G0/G1 phase, and significantly inhibits colony formation and prolong the progression in MLL-AF9 leukemia mice model. The expression showed that the compound could slow the disease progression in MLL-AF9 leukemia mice significantly. Mechanistically, Nilo 22 could reduce the length of telomere by inhibiting telomerase activity and alternative lengthening of telomere (ALT). Nilo 22 shows a significant cytotoxic effect on mice and human leukemia cells, especially for drug resistance cells. Nilo 22 is a promising anti-leukemia agent to solve the common clinical problems of drug resistance and relapse of leukemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call