Abstract

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call