Abstract

AbstractThe budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions, and sink, is examined using a high'resolution eddy‐resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time‐varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE‐to‐EKE conversion occurs almost in the entire basin, while the MKE‐to‐EKE transfer appears mainly along the shelf boundary of the basin (200 m isobath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about 4–5 times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call