Abstract

The effects of single or combined stress of aluminum (Al) and chromium (Cr) on plant growth, root dehydrogenase, oxidative stress and antioxidative enzymes were studied using two barley genotypes differing in Al tolerance in a hydroponic experiment. Al or Cr stress decreased plant growth, lowered root dehydrogenase activity and caused oxidative damage, as characterized by increased MDA and H 2O 2 contents. Under Al or Cr stress, the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), were dramatically increased in plant tissues. Gebeina, an Al-tolerant genotype, had less oxidative damage than Shang 70-119, an Al-sensitive genotype. The extent of oxidative damage induced by Cr varied with the pH of the culture solution, with lower pH values (4.0) being more severe than higher pH values (6.5). The combination of Cr and Al caused a further decrease in plant growth, a decrease in root dehydrogenase activity and an increase in MDA and H 2O 2 contents as well as the activities of antioxidative enzymes. There was also a marked difference between the two barley genotypes in the extent of increased antioxidative enzyme activity under the Cr and Al stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call