Abstract

Territorial behavior is a fundamental and conspicuous behavior within numerous species, but the mechanisms driving territory selection remain uncertain. Theory and empirical precedent indicate that many animals select territories economically to satisfy resource requirements for survival and reproduction, based on benefits of food resources and costs of competition and travel. Costs of competition may vary by competitive ability, and costs of predation risk may also drive territory selection. Habitat structure, resource requirements, conspecific density, and predator distribution and abundance are likely to further influence territorial behavior. We developed a mechanistic, spatially-explicit, individual-based model to better understand how animals select particular territories. The model was based on optimal selection of individual patches for inclusion in a territory according to their net value, i.e., benefits (food resources) minus costs (travel, competition, predation risk). Simulations produced predictions for what may be observed empirically if such optimization drives placement and characteristics of territories. Simulations consisted of sequential, iterative selection of territories by simulated animals that interacted to defend and maintain territories. Results explain why certain patterns in space use are commonly observed, and when and why these patterns may differ from the norm. For example, more clumped or abundant food resources are predicted to result, on average, in smaller territories with more overlap. Strongly different resource requirements for individuals or groups in a population will directly affect space use and are predicted to cause different responses under identical conditions. Territories are predicted to decrease in size with increasing population density, which can enable a population's density of territories to change at faster rates than their spatial distribution. Due to competition, less competitive territory-holders are generally predicted to have larger territories in order to accumulate sufficient resources, which could produce an ideal despotic distribution of territories. Interestingly, territory size is predicted to often show a curvilinear response to increases in predator densities, and territories are predicted to be larger where predators are more clumped in distribution. Predictions consistent with empirical observations provide support for optimal patch selection as a mechanism for the economical territories of animals commonly observed in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call