Abstract

Relatively little season extension research has been conducted in the southwestern United States, particularly with low-cost high tunnels or hoop houses for small-scale farmers. In this study, the economics of winter production of two leafy crops [lettuce (Lactuca sativa) and spinach (Spinacia oleracea)] in high tunnels in two locations in New Mexico were investigated, first using a simulation analysis in which yields were stochastic variables followed by a sensitivity analysis to examine returns from the high tunnel designs more closely. The returns examined in the sensitivity analysis were net of high tunnel materials, crop seed cost, and electricity. Two planting dates were tested and three high tunnel designs were examined: a single layer covering the house (SL), a double layer inflated with air (DL), and a double layer inflated with air and containing black water barrels to store heat (DL+B). The SL and DL designs appear to be the more appropriate technology for both locations for spinach, whereas for lettuce the DL+B model might be a reasonable option in Alcalde, a more-northern location. Overall, the SL and DL models provided adequate protection for growing crops, were less expensive to build, provided more interior growing space, and resulted in higher probabilities of producing positive returns, compared with the DL+B design. The DL design performed similarly to the SL design, but required running electricity to the structure to power the inflation fan, adding to the cost. As a result, expected returns in all cases were higher using the SL design based on the results of the sensitivity analyses. Combining the risk and the sensitivity analyses provides growers with a unique evaluation process to make high tunnel design, planting date, and crop choices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call