Abstract

Biogenic coalbed methane is produced by biological processes mediated by synergistic interactions of microbial complexes in coal seams. However, the ecological role of functional bacteria in biogenic coalbed methane remains poorly understood. Here, we studied the metagenome assembled genomes (MAGs) of Bacillales and Clostridiales from coal seams, revealing further expansion of hydrogen and acetogen producers involved in organic matter decomposition. In this study, Bacillales and Clostridiales were dominant orders (91.85± 0.94%) in cultured coal seams, and a total of 16 MAGs from six families, including Bacillus, Paenibacillus, Staphylococcus, Anaerosalibacter, Hungatella and Paeniclostridium, were reconstructed. These microbial groups possessed multiple metabolic pathways (glycolysis/gluconeogenesis, pentose phosphate, β-oxidation, TCA cycle, assimilatory sulfate reduction, nitrogen metabolism and encoding hydrogenase) that provided metabolic substrates (acetate and/or H2) for the methanogenic processes. Therein, the hydrogenase-encoding gene and hydrogenase maturation factors were merely found in all the Clostridiales MAGs. β-oxidation was the main metabolic pathway involved in short-chain fatty acid degradation and acetate production, and most of these pathways were detected and exhibited different operon structures in Bacillales MAGs. In addition, assimilatory sulfate reduction and nitrogen metabolism processes were also detected in some MAGs, and these processes were also closely related to acetate production and/or organic matter degradation according to their operon structures and metabolic pathways. In summary, this study enabled a better understanding of the ecological roles of Bacillales and Clostridiales in biogenic methane in coal seams based on a combination of bioinformatic techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.