Abstract

The main sources of greenhouse gas emissions, accelerating global climate change, are heat and electricity generation. To lower these emissions, an expansion of renewable energy usage is required. Biogas plants, a flexible renewable power source, are one possibility, and are already widely established in the European energy system. This study focuses on the utilisation of raw manure in closed systems to reduce direct CO2eq. emissions. It is the first to compare manure treatment in different types of small-scale biogas applications and under the impact of increasing temperatures resulting from climate change. The environmental impact in terms of four impact categories is evaluated by means of a life cycle assessment. Two cases are investigated: a biogas plant with either subsequent combustion in a combined heat and power plant or the direct usage of biogas as a simplified and less expensive application. The analysis shows that the first case yields –173 kgCO2eq. per m3 of manure, whereas the simplified one causes 20.9 kgCO2eq. per m3 of manure. If the first case is scaled with the currently existing number of small-manure plants in Germany, emissions of 464 mil. t CO2 eq. are mitigated per year. With increasing average annual temperatures, higher manure credits are generated and so the emissions of both plant options are reduced to –264and –69.5 kgCO2 eq. per m3 of manure, respectively, ascribing the direct biogas usage reductions of GHG emissions. Consequently, both systems have the potential for reducing emissions due to improved manure management and can contribute to mitigating climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.