Abstract

Understanding the factors shaping the niche of parasites and its expression over geographical space and through time continues to be a modern scientific challenge with the results of research in this area directly influencing both theoretical and applied biology. This is especially important for proactive management of zoonotic parasites such as Echinococcus multilocularis, the etiologic agent of alveolar echinococcosis. Echinococcus multilocularis has a Holarctic distribution; with its geographic range and prevalence increasing recently in areas of the western Palearctic, while its distribution dynamics are poorly understood in the Nearctic. In this paper, we use an ecological niche modeling (ENM) approach to: i) estimate the current spatial distribution of suitable conditions for the parasite in the Nearctic. ii) Evaluate the abiotic and biotic factors influencing the species distribution. iii) Assess the potential impact of climatic change on the distribution of this species in the Nearctic. Additionally, we report two new occurrence records of this parasite that significantly expands its known geographic range. We reviewed the occurrence records of E. multilocularis for the Nearctic. This was complemented by two new records of the species from Maryland and New Mexico identified using morphology and multivariate morphometrics of the rostellar hooks. From these data we created two ENMs using the software Maxent. The first ENM included climatic variables, while the second included the same abiotic data plus biotic information consisting of four host community-related data sets. We evaluated model performance and variable importance to explore the relation of these variables to the parasite niche. Finally, we projected the resulting niche model onto future climate change scenarios. We found that an important portion of the Nearctic has suitable conditions for E. multilocularis with adequate habitat in the West and East of the continent where the parasite has not been detected. We also found that the proposed biotic variables improve the model performance and provide unique information, while the most critical abiotic variable was related to the amount of solar radiation. Finally, under the future emission scenarios explored, the distribution of suitable habitat for the parasite is predicted to increase by 56 % to 76 %. We obtained a robust model that provides detail on the distribution of suitable areas for E. multilocularis, including areas that have not been explored for the presence of the parasite. The host community variables included in this study seem a promising way to include biotic data for ecological parasite niche modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.