Abstract

Modular symmetries naturally combine with traditional flavor symmetries and mathcal{CP} , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ)T and SL(2, ℤ)U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S3× S3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized mathcal{CP} -transformation. Together with the traditional flavor symmetry (D8× D8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and leftlangle Trightrangle =leftlangle Urightrangle =exp left(frac{pi mathrm{i}}{3}right) . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.