Abstract

Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1M ⊙, γ = 5/3 polytrope is disrupted by a 106 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t/r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.