Abstract
This paper investigates the E-Bayesian and hierarchical Bayesian estimations of shape parameter and reliability function of Kumaraswamy generalized distribution based on upper record values. The classical estimation method is utilized to deduce the maximum likelihood estimation of unknown parameter and reliability function. Bayesian estimates are derived by using conjugate Gamma prior distributions under quadratic and general entropy loss functions. Furthermore, assuming that hyper-hyperparameters obey three prior distributions, the E-Bayesian estimates of unknown parameters and reliability functions are obtained. The hierarchical Bayesian estimates are obtained by using hierarchical prior distributions. We also explore some characteristics and size relationships of E-Bayesian and hierarchical Bayesian estimations. The performance of E-Bayesian, Hierarchical Bayesian, Bayesian, and maximum likelihood estimations is compared based on the minimum mean square error criterion. Finally, the proposed estimation methods are applied to evaluate the reliability of the specimen under ultrasonic fatigue testing, and the results align with their structures and profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.