Abstract

The microstructures of copper (Cu) materials were investigated by electron backscatter diffraction, showing that electrodeposited (ED) Cu has a homogenous polycrystalline microstructure, while cold spray (CS) Cu has a heterogeneous microstructure with varying grain size, pores, and interfacial splat regions. The corrosion rate was examined by corrosion potential (ECORR) and polarization resistance (Rp) measurements on Cu specimens in solutions containing 0.1 M NaCl + 1 × 10−3 M Na2S. Although the as sprayed CS-Cu was the least corrosion resistant, the corrosion rate of the heat-treated CS-Cu was similar to that of the ED-Cu and wrought Cu (SKB-Cu). Electrochemical behaviours of Cu materials were investigated by either a potentiodynamic scan or a potentiostatic polarization at a more positive potential (E > ECORR) for various experiment durations up to 4 h, showing that the heat-treated CS-Cu, SKB-Cu and ED-Cu exhibited very similar behaviour while the as sprayed CS-Cu showed erratic behavior consistent with a variable surface reactivity. Nanoscale scanning transmission electron microscopy analysis has been performed at the cross-section of an anodically-oxidized CS-Cu specimen, revealing a two-layer film structure, mostly composed of Cu sulfide, with a minor diffusion of sulfur in the local area of an interfacial splat boundary tip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.