Abstract

We examine the role of rotation on the evolution and chemical yields of very metal--poor stars. The models include the same physics, which was applied successfully at the solar $Z$ and for the SMC, in particular, shear diffusion, meridional circulation, horizontal turbulence, and rotationally enhanced mass loss. Models of very low $Z$ experience a much stronger internal mixing in all phases than at solar $Z$. Also, rotating models at very low $Z$, contrary to the usual considerations, show a large mass loss, which mainly results from the efficient mixing of the products of the 3$\alpha$ reaction into the H--burning shell. This mixing allows convective dredge--up to enrich the stellar surface in heavy elements during the red supergiant phase, which in turn favours a large loss of mass by stellar winds, especially as rotation also increases the duration of this phase. On the whole, the low $Z$ stars may lose about half of their mass. Massive stars initially rotating at half of their critical velocity are likely to avoid the pair--instability supernova. The chemical composition of the rotationally enhanced winds of very low $Z$ stars show large CNO enhancements by factors of $10^3$ to $10^7$, together with large excesses of $^{13}$C and $^{17}$O and moderate amounts of Na and Al. The excesses of primary N are particularly striking. When these ejecta from the rotationally enhanced winds are diluted with the supernova ejecta from the corresponding CO cores, we find [C/Fe], [N/Fe],[O/Fe] abundance ratios that are very similar to those observed in the C--rich, extremely metal--poor stars (CEMP). We show that rotating AGB stars and rotating massive stars have about the same effects on the CNO enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.